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ABSTRACT

Time-series forecasting is a long-standing challenge in statistics and machine
learning, with one of the key difficulties being the ability to process sequences
with long-range dependencies. A recent line of work has addressed this by apply-
ing the short-time Fourier transform (STFT), which partitions sequences into mul-
tiple subsequences and applies a Fourier transform to each separately. We propose
the Frequency Information Aggregation (FIA-Net), a model that can utilize two
backbone architectures: the Window-Mixing MLP (WM-MLP), which aggregates
adjacent window information in the frequency domain, and the Hyper-Complex
MLP (HC-MLP), which treats the set of STFT windows as hyper-complex (HC)
valued vectors. and employ HC algebra to efficiently combine information from
all STFT windows altogether. Furthermore, due to the nature of HC operations,
the HC-MLP uses up to three times fewer parameters than the equivalent stan-
dard window aggre- gation method. We evaluate the FIA-Net on various time-
series benchmarks and show that the proposed methodologies outperform ex-
isting state-of-the-art meth- ods in terms of both accuracy and efficiency. Our
code is publicly available on https://anonymous.4open.science/r/
research-1803/.

1 INTRODUCTION

Time series forecasting (TSF) is a long-standing challenge that plays a key role in various domains,
such as energy management Rajagukguk et al. (2020), traffic prediction Chen & Chen (2019), and
financial analysis Sezer et al. (2020). With the development of deep learning, myriad neural net-
work (NN) architectures have been proposed and have gradually improved the accuracy on the TSF
problem. Two key architectures that have been used for TSF are recurrent NNs (RNNs) Zhang
& Man (1998); Graves (2012); Chung et al. (2014) and transformers Vaswani et al. (2018); Zhou
et al. (2022a); Wu et al. (2021); Zhang & Yan (2023), each of which aims to capture long-term
dependencies through a different functional feature extraction procedure. While both methods were
proven useful, RNNs struggled with long-term dependencies Pascanu et al. (2013) or non-stationary
data patterns. While transformer architectures may overlook important temporal information due to
permutation invariance Kim et al. (2024), they require many parameters and may suffer from long
runtime. Additional NN-based approaches for TSF consider graph NNs (GNNs) Wu et al. (2020)
and decomposition models Oreshkin et al. (2019).

Recent advancements have demonstrated promising results in processing and extracting features
from the frequency domain Yi et al. (2023a). Techniques leveraging frequency-based transforma-
tions have been applied in various contexts, ranging from computational efficiency improvements
Wu et al. (2021) to seasonal-trend decomposition Zhou et al. (2022a). To better process the fre-
quency domain data, Yi et al. (2023b) developed a complex-valued MLP, which demonstrated su-
perior capability in capturing both temporal and cross-channel dependencies. To better handle non-
stationarities in the data, Shen et al. (2024); Tu et al. (2024); Zeng et al. (2023b) substituted the
standard FFT with the Short-Time Fourier Transform (STFT) Gabor (1946), which divides the se-
quence into separate windows and transforms each window individually into the frequency domain.
While showing better suitability for nonstationary time series data, the STFT yields a set of win-
dows, each of which represents exclusive information about the sequence. However, in practice,
adjacent windows are highly correlated, albeit processed separately by current STFT-based models.
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To incorporate the overlooked shared information, we propose the FIA-Net, a novel TSF model
designed to handle long-term dependencies in the data by aggregating information from subsets
of STFT windows. The FIA-Net has an MLP backbone that processes the STFT windows in the
frequency domain. We propose two novel MLP architectures. The first is termed window-mixing
MLP (WM-MLP), which mixes each STFT window with its neighboring bands. The second is the
HC-MLP. The HC-MLP leverages HC algebra to efficiently combine information from all STFTs
together. By using HC algebra, the FIA-Net is implemented with three times fewer parameters than
the equivalent WM-MLP.

The main contributions of this paper are as follows:

• We construct the FIA-Net with the WM-MLP backbone. The resulting TSF model cap-
tures inter-window dependencies in the frequency domain and benefits from a forward pass
complexity of O(L logL/p) operations, where L is the lookback window length and p is
the number of STFT windows.

• We propose a novel HC-MLP backbone that expands the receptive field of the WM-MLP
while requiring a fraction of the total parameters.

• To reduce the model size and complexity, we filter the STFT windows, leaving only the
top-M frequency components. We show that accuracy is maintained even when M is
significantly smaller than the total number of components.

• We provide an array of experiments that demonstrate the performance of the model and its
efficiency. We show that the FIA-Net improves upon existing models’ accuracy by up to
20%.

• We provide an ablation study, in which we explore the effect of operating over the complex
plane and compare the performance of the two considered MLP backbones.

2 RELATED WORK

Time-Series Forecasting The first notable works on TSF utilize classical statistical linear models
such as ARIMA. Box & Jenkins (1968); Box & Pierce (1970) which consider series decomposition.
These were then generalized to a non-linear setting in Watson (1993). To overcome the limita-
tions posed by the classical models, deep learning was incorporated, where initially, sequential deep
learning was performed using RNN-based models. Two key RNN models are long-short term mem-
ory networks Graves (2012), which introduce a sophisticated gating mechanism, and the DeepAR
model Zhang & Man (1998), which connects the RNN model with AR modeling. While RNNs have
demonstrated expressive power for sequential modeling, they often suffer from low efficiency and
high runtimes in both the forward and backward passes Pascanu et al. (2013). To address these lim-
itations, two popular architectural advancements emerged: transformers and GNNs. Transformer-
based approaches such as Informer Zhou et al. (2023), Reformer Kitaev et al. (2020), and PatchTST
Nie et al. (2023) leverage the attention mechanism to effectively capture temporal dependencies
while introducing innovative methods to reduce the complexity of attention operations.

In contrast, GNNs have been applied to better model dependencies among time series variables by
representing them as nodes in a graph. This approach is particularly effective for capturing spatio-
temporal patterns. For instance, AGCRN Bai et al. (2020) proposed an adaptive graph convolution
mechanism that dynamically adjusts graph structures based on inter-series relationships. Similarly,
MTGNN Wu et al. (2020) integrates graph convolutions with temporal convolutional layers to jointly
learn spatial and temporal dependencies. However, GNNs were not specifically developed to im-
prove upon RNNs but rather to address unique challenges in spatio-temporal modeling.

Frequency Domain Models for Time Series Forecasting A recent line of work attempts to solve
the TFS problem in the frequency domain Yi et al. (2023a), with the purpose of revealing patterns
that may be hidden in the time domain. The FEDformer Zhou et al. (2022a) uses a Fourier-based
framework to separate trend and seasonal components by leveraging the Fourier Transform on sub-
sequences, allowing it to isolate periodic patterns more effectively. ETSformer Woo et al. (2022)
combines exponential smoothing and applies attention in the frequency domain to enhance season-
ality modeling by capturing both short- and long-term dependencies. In FiLM Zhou et al. (2022b),
Fourier projections are used to reduce noise and emphasize relevant features. Additionally, SFM
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Figure 1: Window Mixing mechanism. An input X is transformed into a set of p STFT windows,
which are transformed to the frequency domain and then fed into the WM-MLP, which aggregates
adjacent windows. The WM-MLP outputs are then transformed back to the time domain via a real
STFT, from which the prediction (red) is obtained.

Zhang et al. (2017) and StemGNN Cao et al. (2020) utilize frequency decomposition and Graph
Fourier Transforms to handle complex temporal dependencies in multivariate time series. FRETS
Yi et al. (2023b) extends this approach by proposing frequency-domain MLPs to learn complex rela-
tionships between the real and imaginary components of the FFT. FREQTSF Shen et al. (2024) uses
STFT with attention mechanisms to capture temporal patterns across overlapping time windows.
While frequency models, and specifically the recent use of STFT, have shown significant improve-
ments in TFS performance, each STFT window is often processed separately, ignoring the strong
correlations between adjacent windows.

Hyper-complex Numbers HC numbers extend the complex number system to higher dimensions
Hamilton (1844). Base-4 HC numbers have been widely used in computer graphics to model 3D
rotations Parcollet et al. (2016). Base-8 HC numbers have been explored in image classification and
compression Parcollet et al. (2016); Luo et al. (2010), developing an HC network that showed favor-
able performance on popular datasets. The merit of HC numbers to extract relevant information in
time-series was explored in Saoud & Al-Marzouqi (2020), in which an HC-net was used to analyze
brainwave data, and in Kycia & Niemczynowicz (2024), which explored HC-network for financial
data. In this work, we explore the utility of HC architectures for the efficient processing of STFT
windows in the frequency domain.

3 PROPOSED MODEL : FIA-NET

In this section, we describe FIA-Net, a TSF model that leverages shared information between STFT
windows. We begin by discussing the existing gap in current frequency domain TSF methods,
followed by a brief introduction to frequency domain MLPs Yi et al. (2022). We then outline the
FIA-Net components, presenting the novel complex MLP backbone, discussing a simple frequency
compression step that reduces the MLP input dimension, and outline the complete model.

   

 
  

   

  

Figure 2: FD-MLP
architecture.

Motivation Even though most real-world time-series data is non-
stationary, it may adhere to a piecewise stationary structure, as ob-
served in speech signals ? and financial data Fryzlewicz & Cho
(2014). This local stationarity allows us to partition the series into
stationary correlated STFT subsequences that can be transformed
in the frequency domain. The correlation between the STFT se-
quences has been efficiently utilized in recent works, even though,
as we later show, it affects the downstream model accuracy in the
task of time prediction.
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Frequency Domain MLPs
As we handle complex-valued data, we adopt the frequency domain MLP (FD-MLP) unit from Yi
et al. (2023b). The FD-MLP generalizes the simple neuron to operate with complex-valued weights
and biases. Incorporating complex MLPs has been shown to improve the model performance as
it aligns better with the geometrical structure induced by the complex plane. The FD-MLP unit is
visualized in Figure 2. In Section 4, we will discuss the expansion of the FD-MLP for hyper-complex
numbers.

3.1 ADJACENT INFORMATION AGGREGATION

Consider a sequence X = {x1, . . . , xL} ∈ RD×L where xi ∈ RD, L is the sequence length,
which we refer to as the lookback size, and D is the latent space dimension. Our objective is
to predict the next T elements of the sequence X̂ = {x̂L+1, . . . , x̂L+T } ∈ RD×T , where T is
a predetermined prediction horizon. We are interested in processing X in the frequency domain.
We utilize the STFT, which partitions X into p windows and applies the FFT separately to each
window. In addition, we exploit the real-valued inputs to perform a Real STFT, which results in half
the frequency coefficients. The STFT for the i-th window is defined as:

STFT{X}(ω, τi) =
L∑

t=1

xtw(t− τi)e
−jωt, (1)

Where, w(t−τi) is the window function centered at the location of the i-th window (i ∈ {1, . . . , p}),
ω represents the angular frequency, and j satisfies j2 = −1. Each window is defined by its center
τi and has a size of NFFT

2 + 1. The output of the STFT consists of p windows, each producing a
spectrum of length NFFT

2 + 1.

We propose the window mixing MLP (WM-MLP), which adapts the FD-MLP to properly aggregate
neighboring STFT windows to incorporate shared information. Given a set of complex transformed
windows {C1, . . . , Cp}, the WM-MLP operates on the ith window C in

i as follows:

Cout
i = σ

(
C in

i Wi→i + C in
i−1W (i−1)→i + C in

i+1W (i+1)→i +Bi

)
(2)

where σ(·) is an activation function, (W(i−1)→i,Wi→i,W(i+1)→i)
p
i=1 are the WM-MLP weight

matrices with Cj being a matrix of zeros for j /∈ {1, . . . , p}, and (Bi)
p
i=1 are the WM-MLP bias

vectors, and W is the elementwise complex conjugate of W . The outputs of the WM-MLP are
transformed back to the time domain using the element-wise inverse STFT, which is given by:

iSTFT{XF (w, τi)}(t) =
∑
ω

XF (ω, τ)ejωtw(t− τi) (3)

The STFT, WM-MLP operation, and inverse transform are depicted by Figure 1. In highly nonsta-
tionary data, energy transition between adjacent windows can be sharp. To that end, we introduce
a minor overlap between adjacent windows of NFFT − L−NFFT

p−1 , which implicitly adjusts their
statistics prior to processing by the TSF model by increasing the inter-window correlations.

3.2 IMPLEMENTATION DETAILS AND COMPLETE SYSTEM

Selective Frequency Compression To reduce the input dimensionality to the WM-MLP, we com-
press each transformed window Ci ∈ CNFFT×D along the frequency axis. Specifically, we select the
top M frequency components based on their real and imaginary values across each dimension and
denote the compressed window with CM

i . Then, (CM
1 , . . . , CM

p ) is fed into the WM-MLP layer.
The top-M procedure is given by

CM
i = Top-M

j=1,...,M
|Ci,j |C (4)

where Ci,j is the jth component of Ci and |z|C is the magnitude of z ∈ C. Additionally, we store
the top component indices of equation 4 in a list I(i), which encodes the band from which the
information came. To transform the WM-MLP output Cout

i back to the time domain, we perform a

4
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Figure 3: FIA-Net Model: The input, denoted X , is first fed into the embedding layer, resulting in
XE , which is transformed to the frequency domain via the STFT. We then extract the top-M
components of each STFT window and feed the compressed windows through the WM-MLP. The
MLP outputs are then passed through position-aware zero padding, whose outputs are transformed
back to the time domain and summed with XE via skip connection. The model output X̂ is then
given by applying a linear transformation.

position-aware zero padding, which adds NFFT −M zeros while placing the nonzero components
in their original indices, which correspond to the original frequency bands, i.e.,

Cpadded
i,j =

{
Cout

i,j , j ∈ I(i)
0, else.

In Section 5, we demonstrate that, in addition to improving computational efficiency, this frequency
compression procedure enhances the performance of downstream TSF tasks. The selection of top-
M components allows us to reduce the model’s complexity while maintaining the most relevant
frequency information.

Complete Model The complete FIA-Net, as shown in Figure 3, operates as follows: Given an input
X ∈ RB×L×D, the dimension of X is expanded through a learned embedding layer, resulting in
XE ∈ RB×L×D×E . This expanded representation is then fed into an STFT block that uses the real
input to perform R− STFT on XE . The transformed signal is passed through the SM block, whose
output is further processed by the WM-MLP. The WM-MLP outputs are subsequently padded and
transformed back to the temporal axis, where they are integrated with XE via a skip connection and
resized to the desired output sequence shape using a two-layer MLP decomposition.

Model Complexity The forward pass complexity of the WM-MLP is primarily determined by
the STFT complexity, which is O(L log(Lp )). This represents a significant reduction in complexity
compared to transformer-based methods, which employ intricate mechanisms to reduce their O(L2)
attention complexity to O(L logL). Additionally, the application of top-M frequency selection
further optimizes the forward pass in the frequency domain, reducing both computational demands
and the corresponding MLP size. A detailed analysis of these complexities is provided in Table 11.

4 WINDOW AGGREGATION VIA HYPER-COMPLEX MODELS

Even though the WM-MLP backbone integrates valuable information that benefits the FIA-Net’s
accuracy, information is not only shared between two adjacent STFT windows. In fact, the stronger
the dependencies on the long-term past, the more information is shared between two distant windows
on the frequency axis. Ideally, we would like to aggregate information between all p STFT windows.
Unfortunately, a straightforward extension of the WM-MLP requires O(p2) weight matrices, which
may impair the training procedure and increase model complexity. To address that, we interpret the
set of windows as an HC vector and propose an HC-based MLP that efficiently processes the set of
STFT windows. We begin with a short introduction on HC-algebras, followed by the construction
of the proposed MLP backbone for the FIA-Net.

5
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Figure 4: HC-MLP operating on C in = (C in
1 , C

in
2 , C

in
3 , C

in
4 ), implementing the HC multiplication

(equation 6). Each output unit is the sum of the corresponding inner blocks of the same color,
where a

⊕
symbol denotes complex addition and a

⊗
denotes complex multiplication. A red

outline denotes minus multiplication, and a blue input arrow denotes complex conjugation.

4.1 HYPER-COMPLEX NUMBERS

HC numbers generalize the complex field by introducing additional dimensions while maintaining
algebraic properties. HC number systems are defined by a parameter q that determines the number
of components in the number system. Complex numbers can thus be viewed as an HC number with
q = 2, and an HC number of base q can be represented with p = q/2 complex numbers. In what
follows, we focus on HC numbers with p = 4, termed Octonions O, whose elements are denoted
o = (α1, α2, α3, α4) ∈ O, with αi ∈ C for i = 1, . . . , 4. Additional discussion on p ̸= 4 is given in
Appendix C.

The addition of two Octonions, o1 = (α1, . . . , α4) and o2 = (β1, . . . , β4), is given by their compo-
nentwise sum, while their multiplication follows the Cayley-Dickson construction Khmelnytskaya
& Shapiro (2021). The product o3 = o1 · o2 = (γ1, γ2, γ3, γ4) is given by:

γ1 = α1β1 − α2β2 − α3β3 − α4β4

γ2 = α2β1 + α1β2 + α3β4 − α4β3

γ3 = α3β1 + α4β2 + α1β3 − α2β4

γ4 = α4β1 + α2β3 + α1β4 − α3β2

(5)

Hyper-complex numbers exhibit additional properties such as closed-form expressions for norm
calculations and norm preservation for specific bases. For completeness, we provide additional
information on HC-numbers in Appendix C, where the proposed MLP is presented under specific
bases.

4.2 HYPER-COMPLEX MLP

The longer the range of temporal dependencies in the data, the more shared information there is
between gathered windows. In such cases, the WM-MLP, which incorporates short-term information
in the frequency domain, might fail to capture long-term dependencies. To that end, our goal is to
increase the extent to which information is shared across the STFT windows. To derive a parameter-
efficient solution, we incorporate HC algebra into the frequency domain learning procedure.

Assume that we are given p = 4 complex-valued STFT windows (C in
i ∈ CB×M×E)4i=1, where

the second axis is the transformed frequency domain after top-M frequency component selec-
tion. We treat the set of windows as a single Octonion tensor (C in

1 , C
in
2 , C

in
3 , C

in
4 ) ∈ OB×M×E

and feed it through an HC-valued MLP, whose output is Cout = σ(C in · W + B). For Cout =

6
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(Cout
1 , Cout

2 , Cout
3 , Cout

4 ), it is given by:

Cout
1 = σ(C in

1 W1 − C in
2 W 2 − C in

3 W 3 − C in
4 W 4 +B1),

Cout
2 = σ(C in

2 W 1 + C in
1 W2 − C in

4 W 3 + C in
3 W 4 +B2),

Cout
3 = σ(C in

3 W1 + C in
1 W 3 − C in

2 W 4 + C in
4 W 2 +B3),

Cout
4 = σ(C in

4 W 1 + C in
1 W4 − C in

3 W 2 + C in
2 W 3 +B4).

(6)

where W = (W1, . . . ,W4) ∈ OE×E , B = (B1, . . . , B4) ∈ OE×1 are the HC-MLP weights and
bias, respectively, and σ is a standard activation function, e.g., ReLU. We stress that, as considered in
the complex MLP from Yi et al. (2023b), the HC-MLP is implemented with real-valued operations,
which allows it to plug into every existing automatic differentiation scheme over standard GPUs.
The HC-MLP unit is depicted in Figure 4.

The WM-MLP demonstrates distinct advantages depending on the prediction horizon. For shorter
prediction lengths, it achieves better performance by effectively leveraging all available information
from adjacent and nearby windows. In contrast, for longer horizons, where only closer temporal
information remains relevant, the WM-MLP’s ability to aggregate adjusted windows proves to be
more effective. This behavior is clearly demonstrated in Section 5.2. Moreover, the HC perspective
offers a significant advantage in terms of parameter efficiency. It allows for an implementation
with only p weight matrices, whereas the corresponding WM-MLP would require 3p − 2 weight
matrices (and even p2 weight matrices for a generalization of the WM-MLP), all while preserving
performance. This reduction in parameters becomes increasingly dramatic as p > 4, as further
detailed in Appendix C.

5 RESULTS AND DISCUSSION

5.1 EXPERIMENTAL SETTING

Datasets Following Zhou et al. (2022a); Yi et al. (2023b), we consider the following representative
real-world datasets: 1) WTH (Weather), 2) Exchange (Finance), 3) Traffic, 4) ECL (Electricity),
5) ETTh1 (Electricity transformer temperature hourly), and 6) ETTm1 (Electricity transformer
temperature minutely). The train/validation/test split is 70%, 15%, and 15%, respectively.

Baselines In this research, we followed the TSF SoTA baselines: 1) FedFormer Zhou et al. (2022a),
2) Reformer Kitaev et al. (2020), 3) FreTS Yi et al. (2023b), 4) PatchTST Nie et al. (2023), 5)
Informer Zhou et al. (2023), 6) Autoformer Wu et al. (2021) and 7) LSTF-Linear Zeng et al.
(2023a).

Experiments setup All experiments were conducted using PyTorch Paszke et al. (2019) on a single
RTX 3090, utilizing mean squared error (MSE) loss and the Adam optimizer Kingma (2014). We
established an initial learning rate of 10−3 with an exponential decay scheduler. Hyperparameters
were optimized individually for each dataset (see Appendix B.3 for specific details). We report
performance metrics under both root mean squared error (RMSE) and mean absolute error (MAE).
Additional information on the Normalization B.5, datasets B.1, and baseline models B.2 can be
found in the appendix.

5.2 MAIN RESULTS

Table 1 compares the FIA-Net performance under both the WM-MLP and the HC-MLP backbones
with the SoTA baselines. It is evident that the FIA-Net consistently outperforms the baselines on
most considered values of prediction horizon T , with an average improvement of 5.4% in MAE and
3.8% in RMSE over SoTA models. We note that the performance of the HC-MLP-based network,
which is implemented with significantly fewer parameters, achieves comparable results with the
corresponding WM-MLP and attains the best results over several settings. We can deduce that
the HC-MLP is more suitable for shorter-term prediction, while the WM-MLP backbone is more
suitable for longer ranges.

The WM-MLP backbone results reported in Table 1 consider an optimization with respect to p, the
number of windows, while the HC-MLP considers a fixed size of p = 4 windows. Thus, for a more

7
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Table 1: Forecasting performance comparison across datasets and prediction horizons using RMSE
and MAE. Lower values indicate better performance. Bold denotes the best results, and underlined
indicates the second-best.

Weather Exchange Traffic Electricity ETTh1 ETTm1

Metric 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

HC-MLP (Ours) RMSE 0.069 0.079 0.090 0.098 0.050 0.062 0.078 0.112 0.032 0.034 0.035 0.036 0.070 0.068 0.071 0.077 0.083 0.085 0.094 0.101 0.074 0.082 0.089 0.096
MAE 0.030 0.039 0.043 0.054 0.035 0.049 0.061 0.089 0.016 0.017 0.017 0.018 0.040 0.041 0.044 0.049 0.057 0.064 0.068 0.075 0.049 0.056 0.060 0.067

WM-MLP (Ours) RMSE 0.071 0.081 0.089 0.097 0.048 0.060 0.076 0.107 0.033 0.033 0.034 0.036 0.067 0.068 0.070 0.076 0.084 0.088 0.097 0.102 0.076 0.082 0.089 0.094
MAE 0.031 0.041 0.045 0.053 0.034 0.047 0.058 0.086 0.016 0.016 0.016 0.018 0.039 0.041 0.044 0.049 0.057 0.066 0.071 0.075 0.052 0.055 0.058 0.064

FreTS RMSE 0.071 0.081 0.090 0.099 0.051 0.067 0.082 0.110 0.036 0.038 0.038 0.039 0.065 0.064 0.072 0.079 0.087 0.091 0.096 0.108 0.077 0.083 0.089 0.096
MAE 0.032 0.040 0.046 0.055 0.037 0.050 0.062 0.088 0.018 0.020 0.019 0.020 0.039 0.040 0.046 0.052 0.061 0.065 0.07 0.082 0.052 0.057 0.062 0.069

PatchTST RMSE 0.074 0.084 0.094 0.102 0.052 0.074 0.093 0.166 0.032 0.035 0.039 0.040 0.067 0.066 0.067 0.081 0.091 0.094 0.099 0.113 0.082 0.085 0.091 0.097
MAE 0.034 0.042 0.049 0.056 0.039 0.055 0.071 0.132 0.016 0.018 0.020 0.021 0.041 0.042 0.043 0.055 0.065 0.069 0.073 0.087 0.055 0.059 0.064 0.070

LTSF-Linear RMSE 0.081 0.089 0.098 0.106 0.052 0.069 0.085 0.116 0.039 0.042 0.040 0.041 0.075 0.070 0.071 0.080 0.089 0.094 0.097 0.108 0.080 0.087 0.093 0.099
MAE 0.040 0.048 0.056 0.065 0.038 0.053 0.064 0.092 0.020 0.022 0.020 0.021 0.045 0.043 0.044 0.054 0.063 0.067 0.070 0.082 0.055 0.060 0.065 0.072

FEDformer RMSE 0.088 0.092 0.101 0.109 0.067 0.082 0.105 0.183 0.036 0.042 0.042 0.042 0.072 0.072 0.075 0.077 0.096 0.100 0.105 0.116 0.087 0.093 0.102 0.108
MAE 0.050 0.051 0.057 0.064 0.050 0.064 0.080 0.151 0.022 0.023 0.022 0.022 0.049 0.049 0.051 0.055 0.072 0.076 0.080 0.090 0.063 0.068 0.075 0.081

Autoformer RMSE 0.104 0.103 0.101 0.110 0.066 0.083 0.101 0.181 0.042 0.050 0.053 0.050 0.075 0.099 0.115 0.119 0.105 0.114 0.119 0.136 0.109 0.112 0.125 0.126
MAE 0.064 0.061 0.059 0.065 0.050 0.063 0.075 0.150 0.026 0.033 0.034 0.035 0.051 0.051 0.088 0.116 0.079 0.086 0.088 0.102 0.081 0.083 0.091 0.093

Informer RMSE 0.139 0.134 0.115 0.132 0.084 0.088 0.127 0.170 0.039 0.047 0.053 0.054 0.124 0.138 0.144 0.148 0.121 0.137 0.145 0.157 0.096 0.107 0.119 0.149
MAE 0.101 0.097 0.101 0.132 0.066 0.068 0.093 0.117 0.023 0.030 0.034 0.035 0.094 0.105 0.112 0.116 0.093 0.103 0.112 0.125 0.070 0.082 0.090 0.115

Reformer RMSE 0.152 0.201 0.203 0.228 0.146 0.169 0.189 0.201 0.053 0.054 0.053 0.054 0.125 0.138 0.144 0.148 0.143 0.148 0.155 0.155 0.089 0.108 0.128 0.163
MAE 0.108 0.147 0.154 0.173 0.126 0.147 0.157 0.166 0.035 0.035 0.035 0.035 0.095 0.121 0.122 0.120 0.113 0.120 0.124 0.126 0.065 0.081 0.100 0.132

suitable comparison, Table 2 shows a comparison of the FIA-Net performance under both backbones
with p = 4. We note that when p is similar for both models, the FIA-Net attains similar results under
both backbones, while the HC-MLP requires significantly fewer parameters. Consequently, when
the number of windows allows for an HC-MLP version (e.g., p = 2ℓ as we further explain in
Appendix C), an HC-MLP backbone is preferable.

Table 2: Performance comparison between WM-MLP and HC-MLP with a fixed number of STFT
windows (p = 4). Results demonstrate that HC-MLP achieves comparable accuracy while
significantly reducing model parameters, making it preferable for efficient implementations.

Traffic ETTh1 ETTm1

Metric 96 192 336 720 96 192 336 720 96 192 336 720

WM-MLP (p = 4)
RMSE 0.033 0.034 0.035 0.036 0.088 0.094 0.100 0.103 0.074 0.082 0.089 0.096

MAE 0.016 0.016 0.017 0.018 0.058 0.064 0.068 0.075 0.049 0.056 0.060 0.067

HC-MLP
RMSE 0.032 0.034 0.035 0.036 0.083 0.085 0.094 0.101 0.072 0.082 0.089 0.096

MAE 0.016 0.017 0.017 0.018 0.049 0.057 0.064 0.068 0.049 0.056 0.060 0.067

5.3 ABLATION STUDIES

We consider three ablation studies that best demonstrate the key aspects of the proposed work.
We focus on the effect of frequency selection, the size of the lookback window, and the omission
of real/imaginary components in the training procedure. We show that, in various cases, the total
amount of parameters can be decreased by up to 60%. Due to space limitations, the results are
demonstrated on a single dataset, while a full discussion and additional results are given in Appendix
D.4.

5.3.1 FREQUENCY DIMENSION COMPRESSION

1 2 4 8 12 16 20 Mmax
M - Selected quantity of frequencies

0.0870

0.0872

0.0874

0.0876

0.0878

0.0880

RM
SE

0.0578

0.0580

0.0582

0.0584

0.0586

M
AE

RMSE
MAE

Figure 5: Accuracy vs. M

We study the effect of the parameter M in the top-M frequency
component selection process on the ETTh dataset. As seen in figure
5, even though the model performance varies over different datasets
and forecasting horizon sizes, in most cases, M = 4 attains the best
accuracy. Furthermore, note that taking M < Mmax = NFFT

2 + 1
improves the model’s results. We conjecture that considering fewer
frequency components decreases the NN class complexity, which
potentially simplifies the optimization procedure landscape while
preserving most of the information contained within the signal. We
expand upon this discussion and provide additional results in the
Appendix D.1.
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5.3.2 EFFECT OF LOOKBACK WINDOW SIZE

6725764802881929624
Sequence Length (L)
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0.12

M
AE

T = 96
T = 192

T = 336
T = 720

0.05

0.06

0.07

0.08

RM
SE

Figure 6: Accuracy vs. L.

In this section, we evaluate the impact of varying lookback win-
dow sizes L ∈ {24, 48, 96, 192, 288, 480, 576, 720} for different
prediction lengths T ∈ {96, 192, 336, 720}. As shown in Figure
6, the dotted line represents the RMSE, while the solid line repre-
sents the MAE. The model’s performance initially improves as L in-
creases, as expected, since a longer lookback provides more contex-
tual information. However, many models exhibit parabolic behav-
ior, where performance deteriorates after a certain point due to over-
fitting to noise or unrealistic patterns in the data. In contrast, our
model maintains stable performance and effectively avoids overfit-
ting, demonstrating its robustness to changes in lookback window
size. Additional experiments can be found in Appendix D.2.

5.3.3 REDUNDANCY OF COMPLEX REPRESENTATION

We study the effect of the real and imaginary components on prediction quality. We fix the hyper-
parameters E = 128, p = 13, NFFT = 16, M = Mmax, and compare several scenarios, such that
each scenario considers the masking of a different component, either in the data, the parameters,
or both. The masking occurs in both training and inference. As seen in Table 3, the elimination
of either the real or imaginary components in the data does not significantly affect the downstream
accuracy, which may hint at redundancy in the learning procedure. Furthermore, this redundancy is
maintained when we consider the intersection omission of the real/imaginary parts of both the data
and the MLP weights. This phenomenon can be explained through the Kramers-Kronig relation
(KKR) Kronig (1926); Kramers (1927), which provides a representation of the real component of
an analytic complex-valued function in terms of its complex components and vice versa. Roughly
speaking, for a complex-valued function c(ω) = Re{c}(ω) + iIm{c}(ω), the KKR are given by

Re{c}(ω) = 1

π

∫ ∞

−∞

Im{c}(σ)
ω − σ

dσ, Im{c}(ω) = − 1

π

∫ ∞

−∞

Re{c}(σ)
ω − σ

dσ.

Thus, we conjecture that masking one component forces the other to recover both in the learning
procedure by implicitly approximating the KRR. We therefore believe that a sophisticated system
design that considers a KRR-based architecture may lead to the sufficiency of a single component
in the forecasting task but leaves a complete study of that subject to future work. This phenomenon
is further explored in Appendix 8.

Dataset
I/O 96/96 96/192 96/336 96/720

Hidden Part MAE RMSE MAE RMSE MAE RMSE MAE RMSE

ETTm1

XReal 0.0522 0.0797 0.0560 0.0850 0.0597 0.0888 0.0658 0.0958
X Imag 0.0521 0.0792 0.0562 0.0844 0.0592 0.0879 0.0684 0.0976
WReal 0.0522 0.0791 0.0557 0.0843 0.0588 0.0875 0.0669 0.0964
W Imag 0.0526 0.0801 0.0560 0.0849 0.0596 0.0888 0.0651 0.0953

W Imag, X Imag 0.0523 0.0798 0.0560 0.0849 0.0592 0.0884 0.0644 0.0947
WReal, XReal 0.0522 0.0791 0.0557 0.0843 0.0588 0.0887 0.0669 0.0930

∅ 0.0522 0.0791 0.0565 0.0848 0.0592 0.0878 0.0685 0.0975

Table 3: Performance comparison on ETTm1 for I/O = 96× {96, 192, 336, 720} with various
modes. XReal/X Imag hide the real/imaginary parts of the input, while WReal/W Imag zero out the
corresponding weights. Completely ignoring both components is denoted as (W Imag, X Imag) or
(WReal, XReal).

6 CONCLUSION

This paper presents FIA-Net, a new model for long-term time series forecasting using STFT window
aggregation in the frequency domain and HC MLPs. The proposed methodology shows superior
performance over existing SoTA on standard benchmark datasets. We show that treating the set of
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STFT windows as a single HC tensor, which is processed by a novel HC-MLP, significantly reduces
the total amount of parameters, with no degradation in the TSF accuracy. We study various schemes
to increase model efficiency by, for example, choosing the top-M magnitude frequency components.
Experimental results show that the omission of one of the complex representation components does
not induce notable segregation in performance, which may be explained by the KKR. For future
work, we aim to leverage the KKR equations to propose a forecasting model that only considers the
real component in the complex representation while operating over the complex plane. Additionally,
we plan to further investigate the relationship between the number of adjacent STFT windows in the
WM-MLP backbone and the statistical properties of the datasets.
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APPENDIX FOR ”EFFICIENT TIME SERIES FORECASTING VIA
HYPER-COMPLEX MODELS AND FREQUENCY AGGREGATION”

A NOTATIONS & SYMBOLS

A.1 NOTATION

We provide a detailed table of the involved notation in this paper:

Symbol Description
B Batch size.
L Lookback window size.
D Number of features for each time step.
T Length of the prediction horizon.
E Embedding size.
M Number of frequencies to select from all the frequencies using the top M magnitudes.
X Multivariate time series with a lookback window of size L at timestamps t.
Xt Multivariate values of D distinct series at timestamp t.
Xt,i The value of the i-th feature of the distinct series at timestamp t.
X̂ Ground truth target values.
σ activation function
P Number of windows in the STFT.

NFFT Number of frequency bins in each window of the STFT.
ω Window function for the STFT.
XE X after traversing through the embedding layer.
XRec The reconstructed X after the frequency alteration.
cti The i-th window of the input in the time domain.
Ci The i-th window of the STFT containing NFFT frequency bins.

C in
i

The i-th window of the STFT, retaining the top M frequency components based on
magnitude.

Cout
i The i-th window of the STFT after the WM-MLP/WHC has been applied.

Wi→j
The weights that capture the frequency energy shift between window i and j, defined
as Wi→j = WReal

i→j + jW Img
i→j , where Wi→j ∈ CE×E .

Bi→j
The bais that capture the frequency energy shift between windows i and j, defined as
Bi→j = BReal

i→j + jBImg
i→j , where Bi→j ∈ CE .

Table 4: Table of Symbols and Descriptions

A.2 DIMENSIONS

The following table summarizes the dimensions of the data tensor in every step of the FIA-Net.

Symbol Dimension

X RB×L×D

XE RB×L×D×E

Ci CB×NFFT×D×E

CM
i CB×M×D×E

C
in/out
i CB×M×D×E

XRec RB×L×D×E

X̂ RB×T×D

Table 5: Table of Symbols and Dimension
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B ADDITIONAL EXPERIMENTAL DETAILS

B.1 DATASET DESCRIPTIONS

In our experiments, we utilized thirteen real-world datasets to assess the effectiveness of models
for long-term TSF. Below, we provide the details of these datasets, categorized by their forecasting
horizon.

• Exchange: This dataset includes daily exchange rates for eight countries (Australia,
Britain, Canada, Switzerland, China, Japan, New Zealand, and Singapore) from 1990 to
2016.

• Weather: This dataset gathers 21 meteorological indicators, including humidity and air
temperature, from the Weather Station of the Max Planck Biogeochemistry Institute in
Germany in 2020. The data is collected every 10 minutes.

• Traffic: For long-term forecasting, this dataset includes hourly traffic data from 862 free-
way lanes in San Francisco, with data collected since January 1, 2015.

• Electricity: For long-term forecasting, this dataset covers electricity consumption data
from 321 clients, with records starting from January 1, 2011, and a sampling interval of 15
minutes.

• ETT: This dataset is sourced from two electric transformers, labeled ETTh1 and ETTm1,
with two different resolutions: 15 minutes and 1 hour. These are used as benchmarks for
long-term forecasting.

Datasets Weather Traffic Electricity ETTh1 ETTm1 Exchange Rates

Features 21 862 321 7 7 8
Timesteps 52696 17544 26304 17420 69680 7588
Frequency 10m 1h 1h 1h 15m 1d
Lookback Window 96 48 96 96 96 96
Prediction Length 96, 192, 336, 720 96, 192, 336, 720 96, 192, 336, 720 96, 192, 336, 720 96, 192, 336, 720 96, 192, 336, 720

Table 6: Long Term Datasets Parameters

B.2 BASELINES

We employ a selection of SoTA representative models for our comparative analysis, focusing on
Transformer-based architectures and other popular models. The models included are as follows:

• Informer: Informer enhances the efficiency of self-attention mechanisms to effectively
capture dependencies across variables. The source code was obtained from GitHub, and
we utilized the default configuration with a dropout rate of 0.05, two encoder layers, one
decoder layer, a learning rate of 0.0001, and the Adam optimizer.

• Reformer: Reformer combines the power of Transformers with efficient memory and com-
putation management, especially for long sequences. The source code was sourced from
GitHub, and we employed the recommended configuration for our experiments.

• Autoformer: Autoformer introduces a decomposition block embedded within the model to
progressively aggregate long-term trends from intermediate predictions. The source code
was accessed from GitHub, and we followed the recommended settings for all experiments.

• FEDformer: FEDformer introduces an attention mechanism based on low-rank approx-
imation in the frequency domain combined with a mixture of expert decomposition to
handle distribution shifts. The source code was retrieved from GitHub. We utilized the
Frequency Enhanced Block (FEB-f) and selected the random mode with 64 as the experi-
mental configuration.

• LTSF-Linear: LTSF-Linear is a minimalist model employing simple one-layer linear mod-
els to learn temporal relationships in time series data. We used it as our baseline for long-
term forecasting, downloading the source code from GitHub, and adhered to the default
experimental settings.
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• PatchTST: PatchTST is a Transformer-based model designed for TSF, introducing patch-
ing and a channel-independent structure to enhance model performance. The source code
was obtained from GitHub, and we used the recommended settings for all experiments.

• FreTS: FRETS is a sophisticated model tailored for efficient TSF by exploiting a frequency
domain approach. The implementation is available on GitHub, and we utilized the default
configuration as recommended by the authors. In our work, FRETS serves as the founda-
tional model. We address its limitations, particularly its handling of non-stationary data,
while adapting its strengths, such as its complex frequency learner. To fully grasp the
contributions of this paper, we recommend reviewing FRETS in detail first.

B.3 IMPLEMENTATION DETAILS

Table 7 lists the hyperparameter values used in the FIA-Net implementation. Both WM-MLP and
HC-MLP backbones are implemented with the same hyperparameter values, except for p, the num-
ber of STFT windows.

DataSets Weather Traffic Electricity ETTh1 ETTm1 Exchange rate

Batch Size 16 4 4 8 8 8
Embed Size 128 32 64 128 128 128
Hidden Size 256 256 256 256 256 256
NFF 16 32 32 6 48 32
STFT Windows 7 13 13 33 4 13
S-M 10 Mmax 4 4 4 Mmax

Epoch 10 10 10 10 10 10

Table 7: Hyperparameter Settings for Long-Term Datasets for the WM-MLP and HC-MLP

B.4 EVALUATION METRICS

In this study, we use the Mean Squared Error (MSE) as the loss function during training. However,
for evaluation, we report both the Mean Absolute Error (MAE) and the Root Mean Squared Error
(RMSE).

which are defined as follows:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2, RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2, MAE =
1

n

n∑
i=1

|Yi − Ŷi|

Where:

• Yi represents the true target values,

• Ŷi represents the predicted values,

• n is the total number of samples.

B.5 NORMALIZATION METHODS

In this study, similar to the FRETS model Yi et al. (2023b), we apply min-max normalization to
standardize the input data to the range between 0 and 1. This method helps in ensuring that all
features contribute equally to the model and prevents any specific feature from dominating due to
differences in scale. The formula for min-max normalization is given by:

XNorm =
X −Xmin

Xmax −Xmin

By normalizing the data, we ensure that all input features are within the same range, which can
improve model convergence and performance.
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C ADDITIONAL INFORMATION ON HC NUMBERS AND MODELS

In this section we extend the discussion on HC numbers, considering additional values of p beyond
p = 4. We couple the presentation with the construction of the corresponding HC-MLP in the
considered base. Recall that the base of a HC number, i.e., the number of its components is given
by b = 2p. While hyper-complex number can be defined for any value of b, most research has been
performed on b that is given by a power of 2, as the resulting structure of the (algebraic) field. The
addition of two HC numbers is simply given by the component-wise summation. In what follows,
we focus on HC multiplication and additional properties. For more information on the HC number
system,, we refer the reader to Kantor & Solodovnikov (1989).

C.1 BASE 2 - COMPLEX NUMBERS

When b = 2, the resulting field is the complex plane C. We describe C for completeness of presen-
tation. Given two complex numbers C1 = α1 + jα2 and C2 = β1 + jβ2, where α1, α2, β1, β2 are
real numbers, their complex multiplication is defined as:

C1 · C2 = (α1β1 − α2β2) + j(α1β2 + α2β1)

The norm of a complex number is given by:

|C1|C =
√
α2
1 + α2

2,

which is preserved under multiplication, i.e.,

|C1 · C2|C = |C1|C · |C2|C.
Since the STFT with a single window (p = 1) is equivalent to the standard FFT, applying our method
for hyper-complex number MLP results in the following equation:

Cin = FFT(X)

Cout = σ(C in
Real ·W1,Real−C in

Imag ·W1,Imag+B1,Real)+σ(j(C in
Real ·W1,Imag+C in

Imag ·W1,Real+B1,Imag)

Here, Wi ∈ CE×E denotes the layer weights, B ∈ CE represents the bias term, and the multiplica-
tion occurs across the embedding dimension. Note that for b = 2 the HV formulation boils down to
the one from Yi et al. (2023b). Thus, the HC-MLP can be considered as an HC generalization of the
FD-MLP. which allows for efficient window aggregation.

C.2 BASE 4 - QUATERNIONS

Denote the field of Quaternions with Q̃. We represent Quatenions with a couple of Complex number,
i.e., for H1, H2 ∈ Q̃, H1 = (α1, α2) and H2 = (β1, β2), their multiplication is defined as

H1 ·H2 = (α1β1 − α2β2, α2β1 + α1β2)

The norm of a quaternion is given by:

|q|Q̃ =
√
|α1|2C + |α2|2C

The norm is preserved under multiplication, meaning:

|q1 · q2|Q̃ = |q1|Q̃ · |q2|Q̃
For our model, the corresponding HC-MLP (which we denote QuatMLP) operating on C in =
(C in

1 , C
in
2 ) ∈ Q̃, is given by,

Cout = QuatMLP(C in) = σ(C in ·W +B)

where:

Cout
1 = σ(C1 ·W1 − C2 ·W2 +B1), Cout

2 = σ(C2 ·W1 + C1 ·W2 +B2).

Here, Wi ∈ CE×E , i = 1, 2 denote the layer weights, B ∈ CE represents the bias term, and the
multiplication involves complex MLP operations across the embedding dimension.
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C.3 BASE 16 - SEDENIONS

Elements on the Sedenions field, denoted SS, are denoted with 8-tuples of complex numbers. Given
two sedenions represented by complex numbers S1, S2 ∈ SS, S1 = (α1, α2, . . . , α8) and S2 =
(β1, β2, . . . , β8), their multiplication is given by

S1 · S2 =



α1β1 − α2β2 − α3β3 − α4β4 − α5β5 − α6β6 − α7β7 − α8β8

α1β2 + α2β1 + α3β4 − α4β3 + α5β6 − α6β5 + α7β8 − α8β7

α1β3 − α2β4 + α3β1 + α4β2 + α5β7 − α6β8 − α7β5 + α8β6

α1β4 + α2β3 − α3β2 + α4β1 + α5β8 + α6β7 − α7β6 − α8β5

α1β5 − α2β6 − α3β7 − α4β8 + α5β1 + α6β2 + α7β3 + α8β4

α1β6 + α2β5 − α3β8 + α4β7 − α5β2 + α6β1 − α7β4 + α8β3

α1β7 + α2β8 + α3β5 − α4β6 − α5β3 + α6β4 + α7β1 − α8β2

α1β8 − α2β7 + α3β6 + α4β5 − α5β4 − α6β3 + α7β2 + α8β1


where each component follows the rules of Complex multiplication. The norm of a sedenion is given
by:

|S|SS =

√√√√ 8∑
j=1

|αj |2C

Unlike nase 2, 4 and 8, Sedenions do not preserve the norm under addition and multiplication.

The base-16 HC-MLP, denoted SedMLP, operating on an input C in from the STFT with multiple
windows C in = (C in

j )
8
j=1, is given by

Cout = SedMLP(C in) = σ(C in ·W +B)

where:

Cout
1 = σ

(
C in

1 W1 − C in
2 W2 − C in

3 W3 − C in
4 W4 − C in

5 W5 − C in
6 W6 − C in

7 W7 − C in
8 W8 +B1

)
Cout

2 = σ
(
C in

1 W2 + C in
2 W1 + C in

3 W4 − C in
4 W3 + C in

5 W6 − C in
6 W5 + C in

7 W8 − C in
8 W7 +B2

)
Cout

3 = σ
(
C in

1 W3 − C in
2 W4 + C in

3 W1 + C in
4 W2 + C in

5 W7 − C in
6 W8 − C in

7 W5 + C in
8 W6 +B3

)
Cout

4 = σ
(
C in

1 W4 + C in
2 W3 − C in

3 W2 + C in
4 W1 + C in

5 W8 + C in
6 W7 − C in

7 W6 − C in
8 W5 +B4

)
Cout

5 = σ
(
C in

1 W5 − C in
2 W6 − C in

3 W7 − C in
4 W8 + C in

5 W1 + C in
6 W2 + C in

7 W3 + C in
8 W4 +B5

)
Cout

6 = σ
(
C in

1 W6 + C in
2 W5 − C in

3 W8 + C in
4 W7 − C in

5 W2 + C in
6 W1 − C in

7 W4 + C in
8 W3 +B6

)
Cout

7 = σ
(
C in

1 W7 + C in
2 W8 + C in

3 W5 − C in
4 W6 − C in

5 W3 + C in
6 W4 + C in

7 W1 − C in
8 W2 +B7

)
Cout

8 = σ
(
C in

1 W8 − C in
2 W7 + C in

3 W6 + C in
4 W5 − C in

5 W4 − C in
6 W3 + C in

7 W2 + C in
8 W1 +B8

)
Here, Wi ∈ CE×E , i = 1, . . . , 8 denotes the layer weights, B ∈ CE represents the bias term, and
the multiplication involves complex MLP operations across the embedding dimension.
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D ADDITIONAL ABLATION STUDIES

This section presents additional ablation studies, expanding on the findings reported in Section 5.3.
We analyze the impact of FFT resolution, embedding size, and the number of STFT windows on
WM-MLP performance. Additionally, we include further results for the frequency compression,
sequence length, and real vs. imaginary component discussions. Furthermore, we provide a com-
parative analysis of various hyper-complex fields (octonions, quaternions, and sedenions) for the
HC-MLP and report the corresponding results.

D.1 PARAMETER SENSITIVITY

In this section, we conduct a parameter sweep to examine the effects of different hyperparameters
on model performance. To accomplish this, we utilize two datasets: the ETTh1 dataset and the
electricity dataset. Each section presents four graphs illustrating the results on the two datasets for a
configuration of I/O = 96×96, 336. Except for the specific experiment sweep, the embedding size
is set to 128 for the ETTh1 dataset and 64 for the electricity dataset, with M set to 0 for all datasets.

Embed Size In this section, we evaluate the influence of embedding size on the
model’s performance. We conducted experiments with embedding dimensions E ∈
{1, 2, 4, 8, 16, 32, 64, 128, 256, 512}, while keeping the following parameters fixed: NFFT = 16,
B = 8, p = 13, and M = Mmax. We can observe that as we increase the embedding size, the loss
decreases until we reach a certain point (which is dependent on the dataset). This is likely because
a larger embedding size enables the model to capture more features; however, an excessively high
embedding size may lead to overfitting.
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Figure 7: Comparison of MSE and MAE across different values of E for varying T on the ETTh1
and Electricity datasets.

Amount of Windows (High Dim) In this section, we evaluate the influence of the number of
windows (p) on the model’s performance. We conducted experiments with different window counts
p ∈ {3, 6, 14, 17, 25, 33}, while keeping the following parameters fixed: B = 8, M = Mmax, and
the overlap between windows is 50%.
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Figure 8: Comparison of MSE and MAE across different values of p for varying T on the ETTh1
and Electricity datasets.

FFT Resolution (NFFT) In this section, we evaluate the influence of the FFT resolution
(NFFT) on the model’s performance. We conducted experiments with different NFFT ∈
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{6, 8, 12, 16, 24, 32, 48}, while keeping the following parameters fixed: p = 25, B = 8, M =
Mmax.
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Figure 9: Comparison of MSE and MAE across different values of NFFT for varying T on the
ETTh1 and Electricity datasets.

Frequency Choose Max (M) In this section, we provide additional results for various datasets
and prediction lengths T regarding the discussion on frequency compression 5.
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Figure 10: Comparison of MSE and MAE across different values of M for various T on the ETTh1
and Electricity datasets.

D.2 DIFFERENT LOOKBACK WINDOW

In this section, we present additional results for various lookback windows on the ETTh1 and
ETTm1 datasets.
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Figure 11: MAE and RMSE in relation to the Lookback Window L for varying prediction lengths
T ∈ {96, 192, 336, 720} for the ETTh1 and ETTm1 datasets.
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D.3 REAL VS IMAGINARY COMPONENTS

This section provides additional information regarding the real versus imaginary experiment dis-
cussed in Section 5.3.3.

Dataset
I/O 96/96 96/192 96/336 96/720

Hidden Part MAE RMSE MAE RMSE MAE RMSE MAE RMSE

ETTm1

XReal 0.0522 0.0797 0.0560 0.0850 0.0597 0.0888 0.0658 0.0958
X Imag 0.0521 0.0792 0.0562 0.0844 0.0592 0.0879 0.0684 0.0976
WReal 0.0522 0.0791 0.0557 0.0843 0.0588 0.0875 0.0669 0.0964
W Imag 0.0526 0.0801 0.0560 0.0849 0.0596 0.0888 0.0651 0.0953

W Imag, X Imag 0.0523 0.0798 0.0560 0.0849 0.0592 0.0884 0.0644 0.0947
WReal, XReal 0.0522 0.0791 0.0557 0.0843 0.0588 0.0887 0.0669 0.0930

Normal 0.0522 0.0791 0.0565 0.0848 0.0592 0.0878 0.0685 0.0975

ETTh1

XReal 0.0584 0.0877 0.0638 0.0944 0.0684 0.0997 0.0767 0.1047
X Imag 0.0582 0.0879 0.0634 0.0943 0.0679 0.0997 0.0756 0.1041
WReal 0.0586 0.0880 0.0644 0.0948 0.0685 0.0998 0.0759 0.1039
W Imag 0.0584 0.0880 0.0646 0.0951 0.0694 0.1008 0.0781 0.1065

W Imag, X Imag 0.0586 0.0880 0.0644 0.0947 0.0685 0.0998 0.0759 0.1040
WReal, XReal 0.0587 0.0882 0.0642 0.0948 0.0690 0.1005 0.0765 0.1050

Normal 0.0586 0.0878 0.0639 0.0945 0.0684 0.0998 0.0765 0.1043

Table 8: Performance comparison on the ETTm1, ETTh1, and Electricity datasets for
I/O = 96×{96, 192, 336, 720} with different modes. XReal and X Imag refer to hiding the real and
imaginary parts of the input, respectively. WReal and W Imag denote zeroing the real and imaginary
weights, respectively. The cases where both the real and imaginary components are completely
ignored (i.e., both weights and inputs are zeroed) are represented by W Imag, X Imag and
WReal, XReal. MAE and RMSE are reported, where lower values indicate better performance.

D.4 HC-MLP EXPERIMENTAL RESULTS WITH FOR VARIOUS VALUES OF p

In this section, we present additional results on the HC-MLP for various bases. Specifically, we
provide results for the Quaternion base (p = 2, QuatMLP), Octonion base (p = 4, OctMLP), and
Sedenion base (p = 8, SedMLP). Additionally, we include results for a model that aggregates all
windows without using hyper-complex numbers, referred to as BasicMLP. Further details about its
implementation can be found in B.3.

Traffic ETTh1 ETTm1

Metric 96 192 336 720 96 192 336 720 96 192 336 720

SedenionMLP (p = 8)
RMSE 0.0340 0.0346 0.0351 0.0363 0.0896 0.0948 0.0999 0.1047 0.0814 0.0857 0.0894 0.0977

MAE 0.0168 0.0169 0.0173 0.0186 0.0598 0.0640 0.0685 0.0767 0.0542 0.0573 0.0609 0.0682

OctontionMLP (p = 4)
RMSE 0.0335 0.0343 0.0349 0.0361 0.0834 0.0874 0.0941 0.1017 0.0739 0.0831 0.0888 0.0967

MAE 0.0166 0.0167 0.0172 0.0185 0.0579 0.0635 0.0676 0.0759 0.0496 0.0556 0.0603 0.0673

QuaternionMLP (p = 2)
RMSE 0.0335 0.0343 0.0350 0.0362 0.0874 0.0938 0.0997 0.1059 0.0796 0.0847 0.0887 0.0974

MAE 0.0165 0.0167 0.0172 0.0184 0.0580 0.0633 0.0687 0.0783 0.0526 0.0564 0.0603 0.0678

BasicMLP
RMSE 0.0372 0.0391 0.0384 0.0415 0.0962 0.1025 0.1061 0.1187 0.0832 0.0903 0.0967 0.1066

MAE 0.0180 0.0195 0.0201 0.0217 0.0650 0.0714 0.0761 0.0886 0.0546 0.0595 0.0649 0.0753

Table 9: Comparison of different hypercomplex structures on the ETT and Traffic datasets.
QuadMLP (2 windows), OctMLP (4 windows), and SedMLP (8 windows) represent hypercomplex
models of increasing dimensionality, while BasicMLP is a non-hypercomplex linear model
aggregating window information. Performance is reported using MSE and RMSE metrics, where
lower values indicate better accuracy.
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D.5 EXTENDED NEIGHBORHOOD AGGREGATION IN WM-MLP

In this section, we present additional results on the WM-MLP with extended neighborhood aggrega-
tion. Specifically, we provide results for varying neighborhood sizes, where the model incorporates
information not only from directly adjacent windows but also from second-order and third-order
neighbors. The experiments were conducted on the ETTm1 and ETTh1 datasets with prediction
lengths of 96, 192, 336, and 720.

For the two-neighbor case, the output Cout
i is computed as:

Cout
i = σ

(
C in

i Wi→i + C in
i−1W(i−1)→i + C in

i+1W(i+1)→i

+ C in
i−2W(i−2)→i + C in

i+2W(i+2)→i +Bi

)
. (7)

For the three-neighbor case, the output Cout
i is computed as:

Cout
i = σ

(
C in

i Wi→i + C in
i−1W(i−1)→i + C in

i+1W(i+1)→i

+ C in
i−2W(i−2)→i + C in

i+2W(i+2)→i

+ C in
i−3W(i−3)→i + C in

i+3W(i+3)→i +Bi

)
. (8)

ETTh1 ETTm1

Metric 96 192 336 720 96 192 336 720

WM-MLP (1 Neighbor)
RMSE 0.084 0.088 0.097 0.102 0.076 0.082 0.089 0.094

MAE 0.057 0.064 0.068 0.075 0.052 0.055 0.058 0.064

WM-MLP (2 Neighbors)
RMSE 0.095 0.101 0.106 0.120 0.084 0.091 0.097 0.104

MAE 0.065 0.071 0.076 0.090 0.055 0.060 0.065 0.073

WM-MLP (3 Neighbors)
RMSE 0.095 0.102 0.109 0.120 0.084 0.091 0.097 0.010

MAE 0.065 0.071 0.078 0.090 0.055 0.060 0.065 0.073

Table 10: Performance comparison of WM-MLP with varying numbers of neighbors (1, 2, and 3)
on the ETTh1 and ETTm1 datasets for prediction lengths of 96, 192, 336, and 720. Metrics include
RMSE and MAE. Results for WM-MLP with one neighbor are derived from the baseline values
reported in the original paper.
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D.6 COMPLEXITY ANALYSIS

We conducted an asymptotic analysis of modern models to compare their training time, memory
usage, and testing steps. The results are summarized in Table 11. The comparison highlights the
computational efficiency of the WM-MLP and HC-MLP models relative to other state-of-the-art
approaches. Specifically, both models demonstrate competitive performance with logarithmic com-
plexity in training time and memory, and a constant number of testing steps.

Method Training Time Training Memory Testing Steps
WM-MLP O(L log L

p ) O(L) 1

HC-MLP O(L log L
P + p2) 1

3O(L) 1
FreTS O(L logL) O(L) 1

PatchTST O(L/S) O(L/S) 1
LTSF-Linear O(L) O(L) 1
FEDformer O(L) O(L) 1
Autoformer O(L logL) O(L logL) 1

Informer O(L logL) O(L logL) 1
Transformer O(L2) O(L2) L

Reformer O(L logL) O(L logL) 1

Table 11: Comparison of models in terms of asymptotic complexity for training time, memory
usage, and testing steps as a function of the lookback window length (L). Here, S denotes the patch
size used in PatchTST, and p represents the number of windows in the STFT transformation.

D.7 VISUALIZATIONS
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(a) Traffic I/O = 96/96
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(b) Traffic I/O = 96/192
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(c) Traffic I/O = 96/336
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(d) Traffic I/O = 96/720

Figure 12: Ground Truth vs. Predictions for Different I/O Settings (Traffic Dataset).
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(a) Electricity I/O = 96/96
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(b) Electricity I/O = 96/192
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(c) Electricity I/O = 96/336
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(d) Electricity I/O = 96/720

Figure 13: Ground Truth vs. Predictions for Different I/O Settings (Electricity Dataset).
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